Type: \(\displaystyle A^{2}_1\) (Dynkin type computed to be: \(\displaystyle A^{2}_1\))
Simple basis: 1 vectors: (1, 1, 1, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_3
simple basis centralizer: 3 vectors: (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 1, 2)
Number of k-submodules of g: 22
Module decomposition, fundamental coords over k: \(\displaystyle 7V_{2\omega_{1}}+15V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, -1, -2, -2)(0, -1, -2, -2)g_{-14}-\varepsilon_{2}-\varepsilon_{3}
Module 21(0, -1, -1, -2)(0, -1, -1, -2)g_{-12}-\varepsilon_{2}-\varepsilon_{4}
Module 31(0, 0, -1, -2)(0, 0, -1, -2)g_{-10}-\varepsilon_{3}-\varepsilon_{4}
Module 41(0, -1, -1, 0)(0, -1, -1, 0)g_{-6}-\varepsilon_{2}+\varepsilon_{4}
Module 51(0, 0, -1, 0)(0, 0, -1, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 61(0, -1, 0, 0)(0, -1, 0, 0)g_{-2}-\varepsilon_{2}+\varepsilon_{3}
Module 73(-1, -2, -2, -2)(1, 0, 0, 0)g_{1}
g_{-9}
g_{-16}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{2}
-\varepsilon_{1}-\varepsilon_{2}
Module 81(0, 1, 0, 0)(0, 1, 0, 0)g_{2}\varepsilon_{2}-\varepsilon_{3}
Module 91(0, 0, 1, 0)(0, 0, 1, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 103(-1, -1, -2, -2)(1, 1, 0, 0)g_{5}
g_{-7}
g_{-15}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 111(0, 1, 1, 0)(0, 1, 1, 0)g_{6}\varepsilon_{2}-\varepsilon_{4}
Module 123(-1, -1, -1, -2)(1, 1, 1, 0)g_{8}
g_{-4}
g_{-13}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 131(0, 0, 1, 2)(0, 0, 1, 2)g_{10}\varepsilon_{3}+\varepsilon_{4}
Module 143(-1, -1, -1, -1)(1, 1, 1, 1)g_{11}
h_{4}+h_{3}+h_{2}+h_{1}
g_{-11}
\varepsilon_{1}
0
-\varepsilon_{1}
Module 151(0, 1, 1, 2)(0, 1, 1, 2)g_{12}\varepsilon_{2}+\varepsilon_{4}
Module 163(-1, -1, -1, 0)(1, 1, 1, 2)g_{13}
g_{4}
g_{-8}
\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
Module 171(0, 1, 2, 2)(0, 1, 2, 2)g_{14}\varepsilon_{2}+\varepsilon_{3}
Module 183(-1, -1, 0, 0)(1, 1, 2, 2)g_{15}
g_{7}
g_{-5}
\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
Module 193(-1, 0, 0, 0)(1, 2, 2, 2)g_{16}
g_{9}
g_{-1}
\varepsilon_{1}+\varepsilon_{2}
\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
Module 201(0, 0, 0, 0)(0, 0, 0, 0)h_{2}0
Module 211(0, 0, 0, 0)(0, 0, 0, 0)h_{3}0
Module 221(0, 0, 0, 0)(0, 0, 0, 0)h_{4}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 7
Heirs rejected due to not being maximally dominant: 11
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 11
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by 0
Potential Dynkin type extensions: A^{2}_2, B^{2}_2, 2A^{2}_1, A^{2}_1+A^{1}_1,